A Modeling and Filtering Framework for Linear Differential-Algebraic Equations
نویسندگان
چکیده
General approaches to modeling, for instance using object-oriented software, lead to differential-algebraic equations (DAE). As the name reveals, it is a combination of differential and algebraic equations. For state estimation using observed system inputs and outputs in a stochastic framework similar to Kalman filtering, we need to augment the DAE with stochastic disturbances (“process noise”), whose covariance matrix becomes the tuning parameter. We will determine the subspace of possible causal disturbances based on the linear DAE model. This subspace determines all degrees of freedom in the filter design, and a Kalman filter algorithm is given. We illustrate the design on a system with two interconnected rotating masses.
منابع مشابه
Mathematical modeling of a fixed bed chromatographic reactor for Fischer Tropsch synthesis
In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...
متن کاملA modeling and filtering framework for linear implicit systems
General approaches to modeling, for instance using object-oriented software, lead to differential algebraic equations (DAE), also called implicit systems. For state estimation using observed system inputs and outputs in a stochastic framework similar to Kalman filtering, we need to augment the DAE with stochastic disturbances (’process noise’), whose covariance matrix becomes the tuning paramet...
متن کاملSpline Collocation for system of Fredholm and Volterra integro-differential equations
The spline collocation method is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003